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Abstract 
 

In this paper we present a set of experiments in which a 
group of simulated robots were evolved for the ability to 
aggregate and to move together toward a light target. 
Evolved individuals display interesting behavioural patterns 
in which groups of robots act as a single unit. Moreover, 
groups of identical evolved individuals display primitive 
forms of "situated" specializations in which different indi-
viduals play different behavioural functions according to 
the circumstances. Overall, the results presented in the pa-
per demonstrates that the evolutionary method, by allowing 
the synthesis of behaviours that emerge from the interaction 
between the robots and the environment and between differ-
ent individual robots, is a powerful method for synthesizing 
collective behaviour. 
 
1.   Introduction 

 
The attempt to develop autonomous robots through a self-
organization process based on artificial evolution is gather-
ing increasing attention. The main advantage of this ap-
proach is that it is an ideal framework for synthesizing ro-
bots whose behaviour emerge from a large number of inter-
actions among their constituent parts. This can be explained 
by considering that, in evolutionary experiments, robots are 
synthesized through a self-organization process based on 
random variation and selective reproduction where the se-
lection process is based on the behaviours that emerge from 
the interactions among the robot's constituent elements and 
between these elements and the environment. This allows 
the evolutionary process to freely exploit interactions with-
out the need to understand the relation between interactions 
and emerging properties as it is necessarily required in other 
approaches that rely more on explicit design. 

On the basis of the same argument we should assume 
that the evolutionary approach can be successfully applied 
also to synthesize robots able to display collective behav-
iours. In this case evolving individuals might exploit not 

only the properties that emerge from the interactions among 
the constituent elements of the robot and between the robot 
and the environment but also the interactions among differ-
ent individual robots.  

In this paper we present a set of experiments in which a 
group of simulated robots were evolved for the ability to 
aggregate and to move together toward a light target. As we 
will see, evolved individuals display interesting behavioural 
patterns in which groups of robots act as a single unit. 
Moreover we will see how groups of identical evolved indi-
viduals display primitive forms of "situated" specializations 
in which different individuals play different behavioural 
functions according to the circumstances. 

In the next section we review the related literature. In 
section 3 and 4 we present our experimental framework and 
the obtained results. Finally, in section 5 we discuss the im-
plications of the obtained results and the future directions of 
our work. 
 
2. Related work  
 
Despite the possible advantages mentioned above, the use of 
artificial evolution to synthesize robots able to display col-
lective behaviour is still a rather unexplored area.  

A pioneering work was conducted by Martinoli (1999) 
who used artificial evolution to synthesize the control sys-
tem of a group of simulated Khepera robots (Mondada et al., 
1993) that were asked to find “food items” randomly dis-
tributed on an arena. The robots were provided with 10 in-
frared sensors and two motors controlling the two corre-
sponding wheels. Eight sensors were distributed around the 
robot body and were used to detect the other members of the 
group and 2 sensors were placed under the robot body and 
were used to detect food items (i.e. black painted disks scat-
tered on the white ground). The controllers of the robot con-
sisted of a simple neural network with 10 sensory neurons, 
that encoded the state of the infrared sensors, directly con-
nected with two motor neurons, that controlled the two cor-
responding wheels. The genotype of the evolving individu-
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als encoded the connection weights of the neural controllers 
and fitness consisted in the percentage of food items de-
tected by a single individual (individual fitness) or by the 
entire group (group fitness). Unfortunately, a detailed and 
quantitative analysis of the obtained behaviours is missing. 
The author only reports that, in some cases, evolved indi-
viduals display interesting collective behaviours such as 
exploring the arena in couples.  

Other experiments have been conducted by evolving 
groups of artificial creatures. Reynolds (1993) evolved the 
control system of a group of creatures placed in an environ-
ment with static obstacles and a manually programmed 
predator for the ability to avoid obstacles and predatation. 
Despite the results described in the paper are rather prelimi-
nary, some evidences indicate that coordinated motion 
strategies begun to emerge. In the attempt to study the evo-
lutionary origin of herding, Werner and Dyer (1993) co-
evolved two populations of predators and prey creatures that 
were selected for the ability to catch prey and to find food 
and escape predators respectively. By analysing the result of 
a single run, the author observed that after some generations, 
during which predators evolved an ability to catch prey, 
creatures converged into small herds which were constantly 
spitting up and reforming. In a more recent work, Ward et 
al. (2001) evolved groups of artificial fish able to display 
schooling behaviours. Also in this case two populations of 
predator and prey creatures were evolved and placed in an 
2D environment containing randomly distributed food ele-
ments. Creatures consisted of neural network controllers 
with two motor neurons controlling the speed and the direc-
tion of motion and two set of sensory neurons encoding: (a) 
the distance and the direction of the nearest prey, predator 
and food, and (b) the amount of changes in water pressure in 
the close proximity of the creature. The analysis of the dis-
tance between prey, prey and food, and predator and prey 
suggest that the emergence of the schooling behaviour is 
correlated with: (a) an advantage in the ability to find food 
clumps, and (b) a better protection from predation. 

Finally, Theraulaz and Bonabeau (1995) evolved a 
population of constructor agents who collectively build a 
nest structure by depositing bricks according to their percep-
tion of the local environment and to a set of behavioural 
rules (see also Bonabeau et al. 2000). 

Overall, these experiments confirm that artificial evo-
lution can be successfully applied to synthesize effective 
collective behaviours. Whether these results could be gener-
alized to the synthesis of realistic creatures (robots), how-
ever, remains to be ascertained given that in these experi-
ments creatures rely on sensory systems that provide “per-
fect sensory information” (e.g. information free from noise) 
and often “unrealistic sensory information” (e.g. distances of 
objects of different types). 
 
3.   The experimental framework 
 
Within the E.U. project SWARM-BOTS whose goal is the 
development of swarms of self-assembling artefacts (IST-

2000-31010) we tried to evolve the control system of  
groups of mobile robots able to aggregate and to move to-
gether toward a light target. 

The environment used in the experiments is a rectangu-
lar arena of 1×2 metres surrounded by walls and includes 
two halogen light bulbs of 230 watts that are located in the 
middle of the west and east walls at an height of  1.5 cm 
from the ground (Figure 1). 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: The environment and the robots. Lines represents the 
walls surrounding the arena. The full circles indicate the two light 
bulbs. The empty circles represent the robots. The dashed curves 
indicate the edges of the test area when the west light target is on 
(for an explanation see section 4). 
 

Groups consists of four Khepera robots (Mondada et 
al., 1993) each provided with 8 infrared sensors able to de-
tect walls and other robots up to a distance of 45 mms, 8 
ambient light sensors, (i.e. the same infrared sensors used in 
a passive mode), and four “simulated” directional micro-
phones. From the motor point of view, each robot is pro-
vided with two motors that control the speed of the two cor-
responding wheels and a simulated speaker that continu-
ously emits a sound with a fixed amplitude and a frequency 
that randomly vary within a fixed range (Figure 2). 
 

 

 

 
 
Figure 2: Left: The Khepera robot (sound speaker and micro-
phones not present). Right: A schema of the position of sensors 
and motors within the robot body. Empty squares and ovals repre-
sent the 8 infrared sensors and the 4 directional microphones, re-
spectively. The infrared sensors are also used to measure the ambi-
ent light. The four light sensors (represented by the empty circles) 
are obtained by averaging the activation value of two adjacent 
ambient light sensors. The two full segments and the full circle 
represent the two wheels controlled by two separate motors and the 
speaker. 
 

Experiments were conducted in simulation by using an 
extended version of Evorobot (Nolfi, 2000). To simulate the 

Test area 
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robot and the environment as accurately as possible, a sam-
pling procedure was used to compute the activation state of 
the infrared and ambient light sensors (see Nolfi and Flore-
ano, 2000). Walls and Khepera robots were sampled by 
placing one physical robot in front of them and by recording 
the state of the infrared sensors while the robot was turning 
360 degrees at 20 different distances from of each object. 
These recorded values were used in simulation to set the 
activation states of the simulated infrared sensors on the 
basis of the current angle and distance of the robot with re-
spect to the other robots and walls. The same procedure was 
used to sample the state of the ambient light sensors for dif-
ferent orientations and distances with respect to a light bulb. 
These recorded values together with a geometrical simula-
tion of shadows were then used in simulation to set the acti-
vation state of the ambient light sensors.  

Given that we do not have physical sound sensors avail-
able yet, we simulated the sound amplitude recorded by a 
directional microphone as follows: 
 

A = (1 / (1 + (D2/10002))) * AF (1) 
 
where A is the amplitude, D is the distance from the sound 
source in mm, 1000 is a constant that assures that the maxi-
mum amplitude is 0.5 after 1 m, AF is an attenuation factor 
that is proportional to the angular difference between the 
microphone and the sound source. AF is computed as fol-
lows: 
 

AF = 1 – 0.9 * (α/180) (2) 
 
were α ranges from 0 to 180 degrees and encodes the angle 
of the simulated microphone with respect to the sound 
source, and 0.9 is a constant that assures that the range of 
the attenuation factor is [0.1, 1.0]. 

The total perceived amplitude (TPA), i.e. the result of 
the contribution of different sound sources corresponding to 
different robots, is computed according to the following 
function: 

 
TPA = (2 / (1 + exp(- Σi

N-1[Ai]))) – 1 (3) 
 

where Ai is the contributions of the sound coming from the 
other N-1 robots and computed according to (1). It should 
be noted that sound waves can sum up or cancel out on the 
basis of their frequency and  phase. The co-existence of dif-
ferent sound sources with slightly different frequencies and 
phases that originate from different positions, therefore, 
tends to produce a semi-irregular wave with picks and val-
leys caused by summation or deletion of waves with differ-
ent amplitudes and frequencies. For this reason we assumed 
that the signal recorded by each microphone is passed to a 
filter that returns a moving average of the maximum picks 
recorded within a given time window. Therefore, in equation 
3, different sound sources sum up less than linearly. Finally, 
a random value with a uniform distribution within the range 
[-0.05, 0.05] is added to all sensors each time step. 

The initial population consists of 100 randomly gener-
ated genotype strings that encode the connection weights of 
100 corresponding neural controllers (Figure 3). Each con-
troller is made up of a neural network with 17 sensory neu-
rons, that encodes the state of the infrared, light, sound sen-
sors, and a bias unit (i.e. a unit whose activation state is al-
ways 1.0), directly connected with 2 motor neurons, that 
control the speed of the two wheels. Each connection weight 
is represented in the genotype with 8 bits that are trans-
formed in a number in the interval [–10, +10]. Therefore, 
the total length of the genotype is 34 * 8 = 272 bits. 
 

 
 
 
 
 
 
 
 
 
 

Figure 3: The neural network controller. 
 

Each genotype is translated into 4 identical neural con-
trollers corresponding to a group of 4 robots. The group is 
allowed to “live” for 4 “epochs” (each epoch consists of 
1500 cycles and each cycle lasts 100ms). During each cycle, 
for each robot: (1) the activation state of the sensors is set 
according to the procedure described above; (2) the activa-
tion state of the two motor neurons is computed according to 
the standard logistic function; (3) the desired speed of the 
two wheels is set according the activation states of the motor 
units. 

At the beginning of each epoch the four robots are 
placed in randomly selected positions and orientations 
within the arena and only the east light is turned on. How-
ever, in order to push robots to continuously move toward 
the light,  when the barycentre of the robots’ group (i.e. the 
average of their x and y coordinates) reach a distance lower 
than 30 cm from the light that is currently on, the light that 
is on is turned off and the other light is turned on. 

To force the robots to move together toward the light, 
we designed a fitness function with two components: a 
group’s compactness component (GCC), and a group’s 
speed component (GSC) that are computed as follows: 

 
GCC = ΣN

i[1 - (SDi / 300)] / N (4) 
 

where SDi is the distance of the robot i from the group’s 
barycentre. SDi are thresholded to 300mm so that distances 
larger than 300 mm do not contribute to the fitness of the 
group; 
 

GSC = (1 + (-∆GD / 7)) / 2 (5) 
 
where ∆GD is the variation of the distance between the 
group’s barycentre and the light target, and 7 is a constant 

Infrared sensors Light sensors Sound sensors Bias

Left and right motors 
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value that corresponds to the maximum possible advance-
ment in mm of a robot or a group or robots during a cycle 
(100 ms). Notice that if the group does not move GSC is 
equal to 0.5. 

The fitness F of a robots’ group is the average of the 
weighted sum of the two components during the individuals’ 
lifetime and is computed as follows: 
 

F = ΣM
t [(GCCt * W) + (GSCt * (1 – W))] (6) 

 
where W is a constant within [0.0 and 1.0] that determines 
the relative weights of the two components of the fitness, 
and t is the current lifecycle ranging from 1 to M (M=6000). 

The best 20 genotypes (corresponding to a group of 
four identical neural controllers) of each generation were 
allowed to reproduce by generating 5 copies of their geno-
type with 2% of their bits replaced with a new randomly 
selected value. The evolutionary process lasted 100 genera-
tions. The experiment was replicated 10 times by starting 
with different randomly generated initial populations.  
 
4.   Results and discussion 
 
By running a set of experiments in which W was set to 0.75 
we observed the emergence of an interesting variety of 
strategies. Figure 4 shows the fitness of the best group of 
individuals of each replication. In all replications evolved 
individuals are able to form groups, keep all together, and 
move toward the light target. By looking at the contribution 
of the two components with respect to the overall fitness, we 
see how, with respect to the ability to form a group and keep 
all together (GCC), rather good performance are obtained in 
all replications. On the contrary, with respect to the ability 
to move together toward the light target (GSC), significant 
differences are observed within different replications and 
best performance are achieved in the first replication (notice 
that the absolute differences between the two components is 
due to the value of the W parameter). 
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Figure 4. Performance of the best group of robots of each replica-
tion after 100 generations. Data obtained by testing each group of 
individuals for 10 epochs. The white and black parts of each histo-
gram represents the contribution of the compact and speed compo-
nents, respectively. The names at the bottom indicates a qualitative 

description of the type of strategy emerged in the corresponding 
replication (see below). 
 

By analysing this set of experiments and by running 
other experiments with W set to 0.5 or 0.8 and/or with 
groups of 2 or 7 robots (detailed results not shown), we ob-
served that all emerged formations and strategies can be 
categorized within three qualitatively different classes that 
we named Flock, Amoeba, and Rose (Figure 5). 

 

Flock 

 

Amoeba 

 

Amoweba-
Track  

Rose 

Rose-Disk 

 
 
Figure 5: Three prototypical formations, Flock, Amoeba and Rose 
and some of their variants, Amoeba-Track and the Rose-Disk. The 
four circles represents the robots. The lines represents the trajec-
tory of the robots while the group is approaching the west light 
(for clarity, the trajectory of one of the four robots is displayed 
with a darker colour). The arrows indicate the direction of the 
rotation of the group with respect to the barycentre of the group 
itself. 
 

Flock. Robots form a rather compact group that then 
move straight toward the light target. While the group ap-
proaches a target, individual robots tend to maintain their 
initial relative position with respect to the rest of the group 
and with respect to the target  (e.g. a robot that happens to 
occupies the right-front position in the group at the begin-
ning of an approaching phase tends to remain in that posi-
tion). This strategy is the most effective overall and is par-
ticularly effective from the point of view of the GSC com-
ponent (i.e. from the point of view of maximizing the speed 
of the group’s movement toward the light target). 

Amoeba. Robots form a group and then move toward the 
light target by varying their relative position. This strategy is 
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not very effective from the point of view of the GCC com-
ponent but is quite effective from the point of view of the 
GSC component (although slightly less effective than the 
flock strategy given that individual robots do not move fully 
straight toward the light). Robots do not keep the same rela-
tive positions while approaching the light target. For exam-
ple the robot that is currently at the rear of the group might 
speed up and reach the front of the group while the other 
robots tend to stay still or to rotate on themselves. Amoeba-
Track is a variation of the strategy described above. The 
group is more compact in this case and the relative move-
ments of the individuals of the group are more regular so 
that the movement of the whole group resembles that of the 
track of a caterpillar seen from a side. 

Rose. Robots form a very compact group and rotates on 
themselves, and eventually over the barycentre of the group, 
while moving toward the light. The shape of the group tend 
to vary for groups of different numbers (i.e. typically 4 ro-
bots form a rhombus while 7 robots form a rose with 6 ro-
bots forming a circle around 1 robot located in the centre of 
the circle itself). Rose-Disk is a variant of the rose in which 
robots rotate around the barycentre of the group but not on 
themselves. Given that these formations are very compact 
and stable in time, this strategy if the most effective from the 
point of view of the GCC component. However, it is also 
very ineffective from the point of view of the GSC compo-
nent. Indeed, compactness is achieved through motor behav-
iour (e.g. turning on itself, and/or turning around the group’s 
barycentre, and/or oscillating back and fourth) that interfere 
with the ability to fast approach the light.   

To analyse these strategies also quantitatively we de-
signed few statistical indexes that allow to better character-
ize the behaviour of single robots and of the whole group 
that are described below. 

The first index, named group stability index (GSI), 
measures how much a formation is stable in time or, in other 
words, how much the relative position of each robot with 
respect to the other robots does not change in time. For ex-
ample, if the group of 4 robots tend to form a square forma-
tion, the index will indicate how long the robots maintain the 
same geometrical formation and how stable the dimension 
of the square is in time. More precisely, the stability index 
(GSI) at cycle t is computed as follows: 
 

Dij
t = dist[(xi

t, yi
t),(xj

t, yj
t)] 

 
GSIt = 1 – (ΣN

i [ΣN
j=i+1[|Dij

t - Dij
t-1|] / 7]] / 

 ((N * (N-1)/2)) ) 

 
(7) 

 
where Dij

t is the Cartesian distance between each couple of 
robot i and j at time t, N is the number of robots in the group 
(Figure 6, top), (N * (N-1) / 2)) is the number of distances 
between the robots, and 7 is the maximum possible dis-
placement during a cycle. Notice that GSI index usually 
ranges between the interval [0, 1] and only occasionally 

becomes negative (e.g. when robots go away from each 
other at maximum speed). 

The second index, named group role index (GRI), meas-
ures how much individual robots within the group tend to 
keep the same relative position with respect to the other ro-
bots and the light target. The index corresponds to the aver-
age variation between two successive lifecycles of the x and 
y coordinates of each robot with respect to a Cartesian refer-
ence system in which the origin corresponds to the bary-
centre of the group and the y axis correspond to the line that 
connect the barycentre to the light target (see Figure 6, bot-
tom). More precisely, the index at cycle t is computed as 
follows: 
 
GRIt = 1 – (ΣN

i[dist[(xi
t, yi

t),(xi
t-1, yi

t-1)] / 7] / N) (8) 
 
where dist[ ] is the distance between the x and y position of 
robot i at time t and t-1 (notice that x and y coordinates refer 
to the current Cartesian reference system), and 7 is the 
maximum possible displacement during a cycle. Notice that 
RI index typically ranges between the interval [0, 1] and 
only occasionally becomes negative (e.g. when one light is 
turned on and the other is turned off). 
 

 

Light target

t t+1
  

t

 
 
Figure 6: Top: an example of how the compact index is computed. 
The circles represent the robots, and the dotted lines indicate the 
distances between each couple of robot. The index measures the 
average difference in distances at time t and t+1. Bottom: an ex-
ample of how the role index is computed. The circles and the ar-
rows represent the position of the robots and the Cartesian refer-
ence system at lifecycle t and t+1. The dotted lines indicate the x 
and y co-ordinates of each robot with respect to the reference sys-
tem.  

 
The third and last index is the rotational index (RI), that 

measures how much individual robots rotate on themselves. 
This index at time t is computed on the basis of the different 
speed of the left and right wheel: 

 
RIt = ΣN

i[|(RWi - LWi) / 7|] / N (8) 
 
where RWi and LWi are the distances covered by the right 
and left wheel respectively of the robot i in one cycle.  
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Figure 7: Fitness components and behavioural indexes obtained in the case of the 10 replication of the experiments also described in Figure 
4 and in the case of two control experiments named Herd and RoseC in which the W parameter was set to 0.0 and 1.0 respectively. 
 

 
Figure 7:  shows the value of the three indexes and of the 

two components of the fitness for the best individuals of the 
10 replications of the experiment reported in Figure 4 and of 
two control experiments named Herd and RoseC in which 
W was respectively set to 0 (i.e. the fitness has only the 
speed component) and to 1 (the fitness has only the com-
pactness component). It should be noted that in the first con-
trol experiment (Herd), the robots go towards the light target 
without trying to keep close to each other, while in the sec-
ond control experiment (RoseC), robots form a very stable, 
compact and motionless rose. The value of the indexes and 
fitness components has been computed only within the test 
area shown in Figure 1 during five approaching phase of the 
west light target. 

As shown in the Figure, all strategies, and especially 
Flock and the Rose, are very effective in terms of compact-
ness (GCC) as in the RoseC control condition, and are much 
better that the Herd control condition. In general, a high 
compactness (GCC) is associated with a high stability (GSI), 
as shown by the stability index. This suggests that, by keep-
ing stable spatial relationships, individual robots can reduce 
their reciprocal distances. 

More significant differences are observed in the capacity 
to move towards the light target (GSC). From this point of 
view the Flock strategy significantly outperforms all other 
strategies and achieves a performance similar to the Herd 
control experiment in which the robots are only asked to 
approach the light target. Amoeba strategies achieve inter-
mediate results, and Rose strategies rather poor results. Fi-
nally it should be noted that the GSC component is corre-
lated with a high group role index (GRI) and a low rota-
tional index (RI). This can be explained by considering that, 
to maximize the movement toward the light, robots should 
turn toward the light and start to move straight toward it.  

This implies that the two fitness components (GCC and 
GSC), by requiring the robots to turn toward the other ro-
bots and toward the light might interfere between them-
selves. Apparently, the only way to resolve the interference 
between the two sub-goals consists in strategies where dif-
ferent individuals play and maintain different functions.  

This is what happens in the case of the Flock strategy. In 
this case, in fact, individuals that are located in the frontal 
side of the group with respect to the light target do not turn 
toward the rest of the group but keep their orientation to-
ward the light eventually moving backward to avoid loosing 
the rest of the group. On the contrary individuals located 
behind tend to turn and move toward the other members of 
the group. Moreover, once individuals form a compact 
group and start to move toward the light, each individual try 
to maintain  its current role. The final result is that, once the 
group has been formed, the individual on the frontal side 
drive the whole group toward the light and wait if the other 
individuals get away, while the individuals behind tend to be 
in shadow and only try to keep close to the individuals at the 
front so that the whole group remains compact. 

Figure 8 shows how the individuals that display the 
Flock strategy play different functions in different circum-
stances. Figure 8a shows how the individual that is closer to 
the light target assumes and maintains the function of 
“leader”. Indeed, this individual turns toward the light and 
waits the rest of the group before driving the entire group 
toward the light target. After turning toward the light, it also 
moves backward to speed up the formation of a compact 
group but, as soon as the rest of the group gets closer, it 
starts to move toward the light target thus keeping the fron-
tal position with respect to the rest of the group. Figure 8b 
shows another situation in which the individual that is closer 
to the light target does not turn toward the rest of the group 
but keeps its relative position by waiting the rest of the 
group and by starting to move toward the light as soon as the 
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rest of the group approach it. Figure 8c shows that individu-
als that are shadowed (in this case the second robot from left 
to right) turns and move toward the rest of the group. Fi-
nally, Figure 8d shows that couple of individuals located in 
similar conditions with respect to the light target and to the 
rest of the group might both assume and maintain the role of 
leaders or followers.  
 
a) (1000, 500, 180) (1500, 500, 0) (1600, 500, 0) (1700, 500, 0) 

 

b) (1000, 500, 0) (1500, 800, 0) (1600, 800, 0) (1700, 800, 0) 

 

c) (700, 500, 0) (1000, 500, 0) (1300, 500, 0) (1600, 500, 0) 

 

d) (1000, 300, 0) (1100, 300, 0) (1000, 700, 0) (1100, 700, 0) 

 
 
Figure 8: Behaviour displayed by the individuals relying on a 
Flock strategy initially located in four selected starting positions 
and orientations. In all cases the light target is located on the west 
side. The number in parenthesis indicate the initial x and y posi-
tion and the orientation (0 = west, 180 = east) of each robot. The 
lines represent the trajectories of the four robot and the circles 
represent the final position of the robot after a given amount of 
time. The arrows indicate quick changes of the orientation of indi-
vidual robots. 
 

The overall result of the ability to display and maintain 
“situated” specializations is that individuals can quickly 
form a compact group and then move straight toward the 
light target. The fact that the Flock strategy requires that 

different identical individuals are able to assume and main-
tain qualitatively different functions my also explain why 
this strategy,  that clearly outperform Amoeba and Rose 
strategies (cf. also Figure 4), emerges only in one out of 10 
experiments. Indeed we can hypothesize that the Amoeba 
and Rose strategies, being more simple, might be easier to 
evolve. 

 
 
 
5. Conclusions 

 
We presented a set of experiments in which a group of simu-
lated robots endowed with simple reactive controllers were 
evolved for the ability to aggregate and to move together 
toward a light target. The obtained results demonstrate that 
the evolutionary method, by allowing the synthesis of behav-
iours that emerge from the interaction between the robots 
and the environment and between different robots, is a pow-
erful method for synthesizing collective behaviour. Indeed, 
evolved individuals display a large variety of interesting 
behavioural patterns in which a group of robots seem to act 
as a single unit (e.g. by forming a circular structure that ro-
tates around the barycentre of the group and moves toward 
the light target, or a stable rectangular formation that moves 
straight toward the light target) and in which the behaviour 
of the whole group emerges from the interaction between 
rather simple individual behaviours. The fact that success-
fully results can be obtained without fine tuning the parame-
ters and/or the fitness function demonstrates that, contrary to 
what claimed by Zaera et al. (1996), artificial evolution is an 
effective method for automating the design process of robots 
able to exhibit collective behaviours. Indeed, explicitly pro-
gramming the control systems of robots able to show such 
types of behaviours would be extremely difficult, if not im-
possible. 

By analysing the type of strategies that emerged in dif-
ferent replications of the experiment we observed that all 
strategies can be categorized within three qualitatively dif-
ferent classes and that the most effective strategy includes 
primitive forms of "situated" specializations in which identi-
cal evolved individuals played different behavioural func-
tions according to the circumstances. Such forms of func-
tional specialization seems to be due to the need to reduce 
the interference between conflicting sub-goals such us the 
need to turn and move toward the rest of the group and to-
ward the light target. In future research we plan to investi-
gate more deeply how functional specialization emerges in 
these experiments and whether more complex forms of spe-
cializations can be observed in individuals that are also pro-
vided with internal neurons and/or are able to modify their 
behaviour on the basis of their previous experience. 
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